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ADVANCES IN ESTIMATING CROP YIELD THROUGH COMBINED
REMOTE SENSING AND GRO~TH MODELING

Stephan J. Maas
Plant Physiologist

USDA-ARS Subtropical Agricultural Research Lab
~eslaco, Texas

This presentation describes the advances made over the past
two years in a crop yield estimation technique that combines
aspects of satellite remote sensing and crop simulation modeling.
The technique responds to the challenge to meet the goal estab-
lished at the ARS Remote Sensing ~orkshop (20-22 October 1987,
Beltsville, MD) of developing hybrid remote sensingjagroclimatic
models that can estimate foreign yields more accurately and
domestic yields more economically than by current operational
methods. From the start of the project, attention was paid to
developing a technique that would require a minimum of input
data, and the input data would be of a type routinely available
in an operational program. It was also considered beneficial to
develop a single technique that could be applied to both foreign
and domestic yield estimation.

A number of yield estimation techniques have been proposed
that make use of either remote sensing or growth modeling. These
techniques rely on the inherent strengths of these technologies
(Fig. 1). However, the inherent weaknesses of each technology
have hindered the acceptance of these techniques in operational
yield estimation programs. The technique described irr~his
presentation combines aspects of remote sensing and growth
modeling such that the strengths of one technology make up for
the weaknesses of the other.

The Objective Yield Survey employed by the National Agricul-
tural Statistics Service (NASS) was used as the starting point
for developing the technique, since it sets the standard for
yield estimation accuracy. It also demonstrates that observed
data and models can be combined in an operational program. In
the Objective Yield Survey, observed data are obtained by ground-
level field sampling. These data drive the empirical regression
models used to determine crop yield. NASS has investigated the
use of growth simulation models driven by weather data, ·but
typically these models were not consistently accurate or required
weather or field data that were difficult to acquire operation-
ally. Much of the detail in crop growth models is needed to
accurately simulate the development of the leaf canopy, since
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leaf growth is highly sensitive to genetic influences, environ-
mental conditions (temperature, water stress), fertilization and
plant population density. If the leaf canopy development of a
crop planting is known, modeling the biomass production and yield
of the field is relatively uncomplicated. Vhile leaf canopy
development might be impractical to routinely measure by ground-
based sampling for the large number of fields in an operational
yield estimation program, it could effectively be estimated for
many fields in a region from satellite (like Landsat or SPOT)
observations. Vith the availability of remotely-sensed values of
canopy development, a much simpler growth simulation model
(requiring much simpler weather inputs) can be used. Like the
empirical regression models currently in use by NASS, the
estimates produced by this model will be brought into agreement
~ith what is really happening in the fields through in-season
observations.

Experience has shown that the main problem in using satel-
lite estimates of canopy development in growth models is the
infrequency of observations resulting from the normal overpass
cycle of the satellite and the occurrence of clouds. Thus, a
technique had to be found to incorporate infrequent satellite
observations into the model simulation. A number of techniques
were evaluated (Maas, 1988, Ecological Modelling 41:247-268), and
one called re-parameterization was determined to satisfy this
requirement. The manner in which it operates is shown in Fig. 2.
The model contains relatively simple relationships that produce a
leaf canopy growth curve with a shape that resembles what is
typically observed in the field. Because the relationships are
simple, however, the magnitude of this growth curve a~ determined
from weather data alone might not match what actually occurs in
the field. By comparing the simulated growth curve to infrequent
observations of leaf canopy ~evelopment, parameters in the
relationships can be manipulated until the magnitude of the
simulated canopy growth curve matches the observations. In
practice, this is accomplished by an iterative numerical solution
that produces a "best fit" of the simulation to the observations.
This technique works with observations obtained at any time in
the growing season, and works with as few as one observation.

A prototype operational model called GRAMI has been devel-
oped to test the accuracy of yield estimates to be expected from
this technique. The model currently can simulate the growth of a
number of grain and cereal crops. There is indication that it
can also be adapted to simulate the growth of other crops, such
as soybean, cotton and sunflower. To simulate growth, GRAMI
requires observations of average daily air temperature, daily
total solar irradiance, and an estimate of the planting date of
the field. Rainfall, evapotranspiration or soil moisture data
are not required, since the effects of water stress are assumed
to be present in the observations of leaf canopy development and
thus are implicitly incorporated into the simulation through the
re-parameterization process. In an operational program, adequate
values of average temperature could be interpolated to the field
locations from existing weather stations, or inferred from
weather satellite atmospheric soundings. Daily solar irradiance,
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which used to be difficult to acquire over large areas, can now
be operationally estimated from satellite observations.

Examples of GRAMI simulations for four crops are presented
in Figs. 3-6. Frequent ground-based observations of GLAI (a
measure of leaf canopy development) were used to re-parameterize
the model to determine how well GRAMI could simulate the details
of crop growth over the growing season. In the case of winter
wheat (Fig. 6), the simulation was started at mid-winter to
estimate the spring growth of the crop. The simulations of GLAI
in Figs. 3-6 represent the best fits of modeled to observed data
obtained through the re-parameterization process. The
simulations of biomass (AGDM) are not fits to the observed data.
Rather, they were computed in the model based on temperature and
the absorption of solar irradiance by the simulated leaf canopy.
+he fact that the biomass simulations reasonably match their
respective observations emphasizes the earlier assertion that
modeling crop biomass is relatively easy once the leaf canopy
development has been adequately described. Simulated and
observed values of yield displayed in Figs. 3-6 are also not
markedly dissimilar.

An initial validation of GRAMI was performed to investigate
the accuracy of model estimates based on infrequent satellite
observations of crop canopy development.· The yields of 37 grain
sorghum fields grown during the period 1973-77 in Hidalgo County,
Texas, were modeled using daily temperature and irradiance data
measured at one location in the county. Of the 37 fields, 24
were under dryland cultivation and the remainder were irrigated.
Values of GLAI used to re-parameterize the model were determined
from digitized Landsat MSS images using established conversion
procedures. No information from the study other than planting
dates, the weather data, and remotely-sensed GLAI was used in
simulating the growth and yield of the 37 fields. Results of the
study are presented in Fig. 7, which shows that simulated versus
observed yield values generally cluster along the 1:1 line. Sta-
tistical analysis of the results using SAS indicated that the
sets of simulated and observed yields exhibited equal variances
(1)=1.65 with 36 and 36 df, P>I)=0.1377). The means of the
simulated and observed yields were not significantly different
(t=0.0832 with 72 df, P>t=0.9339), while the mean difference
between simulated and observed yield on an individual field basis
was not si~nificantly different from zero (t=-0.1556 with 36 df,
P>t=0.8772). These results are encouraging, since only one
Landsat MSS observation was available for 25 of the 37 fields in
the study. The yield estimates involving only one Landsat ob-
servation are indicated in Fig. 8. It is apparent that the yield
estimates exhibiting the greatest errors were determined using
only one satellite observation.

More extensive data sets are in preparation for validating
GRAMI. The 1983 Upper Midwest Study contains yield and Landsat
MSS data for approximately 150 fields each of spring wheat, corn
and soybean, and approximately 50 fields each of winter wheat,
grain sorghum and sunflower. The 1985-86 North American Great
Plains Study contains yield and ground-based remote sensing
observations for approximately 250 small plots of winter wheat.
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Preliminary results from these validation efforts should be
available within a year.

In addition to estimating yields based on observed data, the
modeling technique employed by GRAMI must be capable of providing
in-season predictions of yield before harvest. A relatively
simple means of predicting yields within the growing season would
involve running the model up to the current day using observed
weather data and available satellite obsrvations. The simulated
values of biomass on the current day could then be used in an
empirical regression model to predict yield at harvest. This
procedure would be similar to that used operationally by NASS. A
more sophisticated technique would involve running the model up
to the current day using observed weather and satellite data, and
completing the model simulations using "future" weather data.
This future weather data could come from climatological records,
long-range weather predictions, or computerized weather-
synthesizing programs. Since future weather conditions are
uncertain, the simulations could be completed using a number of
individual sets of future daily weather, and the resulting
distribution of yield values used to estimate the probabilities
of yields occurring within certain ranges.

The current version of GRAMI assumes that the effects of
water stress on crop growth are implicitly contained in the
remotely-sensed observations of leaf canopy development. Thus,
the current version of the model does not need to consider rain-
fall, evapotranspiration, or soil moisture. There is some
evidence from physiological studies that water stress may produce
an effect on leaf photosynthetic rate in addition to its effect
on leaf canopy development. This additional effect is related to
stress-induced closing of leaf stomata. The reduction in
photosynthetic rate has been shown to be directly related to the
value of the Idso-Jackson Crop ~ater Stress Index (C~SI). This
index can be evaluated from remote sensing measurements of leaf
canopy temperature. A model called HYDRO has been developed that
can use remotely-sensed observations of canopy development and
temperature to quantify these separate stress effects on the
growth and yield of a crop. HYDRO consists of two submodels-- a
crop growth submodel and a soil moisture balance submodel. The
crop growth submodel is GRAMI modified to include the rela-
tionship that reduces photosynthetic production as a function of
C~SI. The soil moisture balance submodel simulates C~SI over the
growing season as a function of weather data, crop canopy
development, and soil moisture-related parameters. Like GRAMl,
the soil moisture submodel uses an iterative numerical solution
to estimate the parameter values that result in a "best fit" of
simulated to observed CVSI. This simulation is achieved without
the input of rainfall, evapotranspiration, or soil moisture data.

HYDRO was tested using spring wheat irrigation treatment
plot data from Phoenix, AZ (Maas et al., 1989, Proc. 19th Conf.
Agric. Forest Meteorol., AMS, pp. 228-231). The fit of the
simulated to observed C~SI for six wheat varieties is shown in
Fig. 9, while the fit of the simulated to observed leaf canopy
cover (GLAI) is shown in Fig. 10. Also shown in Fig. 10 are
biomass (AGDM) simulations made with and without the stress-
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related effects on photosynthesis. It appears that the biomass
simulations that incorporate the stress-related effect match the
observed biomass values more closely than the simulations that do
not incorporate the effect. This would indicate that, when
significant water stress conditions occur, models that do not
explicitly contain this photosynthesis-related stress effect
(including the current version of GRAMI) might tend to over-
estimate crop growth and yield. The results of this study are
not conclusive. In the Phoenix experiments, water stress was
imposed on the crop abruptly after a period of irrigated growth.
Under natural conditions, water stress develops more gradually,
with an opportunity for the crop plants to acclimate to the
changing conditions. This may explain why some studies (Gibson
and Schertz, 1977, Crop Sci. 17:387-391) indicate that only the
~ffect of water stress on leaf canopy development (and not photo-
synthesis) is evident under natural field conditions. This would
indicate that the current formulation of GRAMI may be adequate
for application to natural conditions. This will be known with
more certainty upon completion of the current GRAMI validation
efforts and continued experimentation with HYDRO.

In conclusion, a yield estimation technique has been devel-
oped that combines remote sensing and growth modeling in such a
way that the strengths of one technology make up for the weak-
nesses of the other. The technique takes advantage of the
dependence of model performance on growth-related parameters that
can be evaluated using infrequent satellite observations and
numerical analysis procedures. Through re-parameterization,
within-season satellite observations of crop canopy development
constrain the response of a relatively simple growth simulation
model to bring it in line with what is happening in the field.
The technique has a number of advantages with respect to its use
in an operational yield estimation program, including,
(1) The same model can be used for both foreign and domestic

applications
(2

3
) The same model can be used for many different crops

() The model is relatively simple, and requires weather data
that can be routinely obtained from existing source~

(4) The model requires infrequent (as few as one) observations
of crop canopy development, which can be easily obtained by
satellites for a large number of fields in a region

(5) The model can be used to produce probabilistic predictions
of yield during the growing season
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Figure 1. Summary of the strengths and weaknesses of the
remote sensing and growth modeling technologies with respect
to crop yield estimation.
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GROllTllMODELING

Provide a quantification of Observations are discrete
the actual state of the crop time events that tell little
during the growing season about how the crop got to

the observed state
Information on crop status Growth and yield must be
can be obtained for many inferred through empirical
fields more economically methods with questionable
than by field sampling general application

Provide a continuous Must contain a considerable
description of crop growth amount of detail
over the growing season
Growth and yield are de- Must have detailed on-site
termined from environmental observations of environ-
conditions based on mental inputs
physiological principles



Figure 2. Schematic diagram of how remotely-sensed
observations are used to constrain the growth model
simulation.
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Figure 3. GRAMl simulation of leaf canopy development(GLAl) and biomass growth (AGDM) for corn (maize). Circles
represent observations, while the solid lines are the
respective model simulations.
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Figure 4. GRAMI simulation of leaf canopy development
(GLAI) and biomass growth (AGDH) for grain sorghum. Circles
represent observations, while the solid lines are the
respective model simulations.
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Figure 5. GRAMI simulation of leaf canopy development
(GLAI) and biomass growth (AGDM) for spring wheat. Circles
represent observations, while the solid lines are the
respective model simulations.

SPRING WHEAT
2000

Yield (kg/he) 0 00

1600 OBSERVED 7120
SfMUU\TED 6747 0

~ 1200
0

0
C)

« 800

400

0
11 20 40 60 80 100 120 140 160
10 0

9
8-

« 7 00
-l 6
(') 5

4
3
2
1
0

0 120 140 160
DAYS AFTER PLANTING



11

Figure 6. GRAMI simulation of leaf canopy development
(GLAI) and biomass growth (AGDM) for winter wheat. Circles
represent observations, while the solid lines are the
respective model simulations. Solid circles indicate growth
that occurred during autumn. "Days after planting" are
actually days after the start of the simulation in mid-
winter.
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Figure 7. Results of the initial validation of GRAMI using
37 grain sorghum fields in Hidalgo County, Texas.
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Figure 8. Same as Fig. 7, except that yield estimates based
on only one Landsat observation are indicated by crosses •
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Figure 9. HYDRO simulations of CYSI for the six spring
wheat varieties grown at Phoenix, Arizona.
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Figure 10. HYDRO simulations of leaf canopy development
(GLAI) and biomass (dry mass) for the six spring wheat
varieties grown at Phoenix, Arizona. Dotted curves
represent biomass simulations that incorporate the stress
effect on photosynthesis, while dashed curves represent
biomass simulations that do not incorporate the effect.
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